This article was downloaded by:
On: 23 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713455674

REACTION OF CuX ${ }_{2}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ WITH 5,5-DIMETHYLMIDAZOLIDINE-2,4-DITHIONE (ss), AND THEIR -2-ONE-4-THIONE (oxs) AND -2-THIONE-4-ONE (sox) ISOLOGUES-CRYSTAL STRUCTURES OF CU (oxs) ${ }_{2} \mathrm{Br}$ AND $\mathrm{Cu}(\mathrm{ss})_{2} \mathrm{Cl}$

Francesco A. Devillanova ${ }^{\text {a }}$; Angelo Diaza; Francesco Isaia ${ }^{\text {a }}$; Gaetano Veraniá; Luigi P. Battaglia ${ }^{\text {b }}$; Anna Bonamartini Corradi ${ }^{\text {b }}$
${ }^{a}$ Istituto di Chimica Generale, Inorganica ed Analitica, Cagliari, Italy ${ }^{\text {b }}$ Istituto di Chimica Generale ed Inorganica, Centro di Studi per la Strutturistica Diffrattometrica del C.N.R., Parma, Italy

To cite this Article Devillanova, Francesco A. , Diaz, Angelo , Isaia, Francesco, Verani, Gaetano, Battaglia, Luigi P. and Corradi, Anna Bonamartini(1986) 'REACTION OF CuX $(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ WITH 5,5-DIMETHYLMIDAZOLIDINE-2,4DITHIONE (ss), AND THEIR -2-ONE-4-THIONE (oxs) AND -2-THIONE-4-ONE (sox) ISOLOGUES-CRYSTAL STRUCTURES OF CU(oxs) ${ }_{2} \mathrm{Br}$ AND Cu(ss) ${ }_{2} \mathrm{Cl}^{\prime}$, Journal of Coordination Chemistry, 15: 2, 161 - 172
To link to this Article: DOI: 10.1080/00958978608079781
URL: http://dx.doi.org/10.1080/00958978608079781

PLEASE SCROLL DOWN FOR ARTICLE

```
Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.
```


REACTION OF CuX $\mathbf{C l}_{2}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ WITH 5,5-DIMETHYLMIDAZOLIDINE-2,4-DITHIONE (ss), AND THEIR -2-ONE-4-THIONE (oxs) AND -2-THIONE-4-ONE (sox) ISOLOGUES-CRYSTAL STRUCTURES OF CU(oxs) $)_{2} \mathrm{Br}$ AND $\mathrm{Cu}(\mathrm{ss})_{2} \mathrm{Cl}$

and

GAETANO VERANI
Istituto di Chimica Generale, Inorganica ed Analitica, Via Ospedale 72, 09100 Cagliari, Italy

LUIGI P. BATTAGLIA and ANNA BONAMARTINI CORRADI
Istituto di Chimica Generale ed Inorganica, Centro di Studi per la Strutturistica Diffrattometrica del C.N.R.,
Via M. D'Azeglio 85, 43100 Parma, Italy.
(Received December 12, 1985; in final form February 17, 1986)

Abstract

Copper(I) complexes, obtained by reacting $\mathrm{CuX}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ with 5,5-dimethylimidazolidine-2-thione-4-one (sox), and its 2-one-4-thione (oxs) and 2,4-dithione (ss) derivatives, are reported. Infrared spectra show evidence for S-coordination in all the complexes. The crystal structure of $\mathrm{Cu}(\mathrm{oxs})_{2} \mathrm{Br}$ shows dimeric units, where every copper (I), practically trigonal planar, undergoes a tetrahedral distorsion by long range interactions with one bridging bromine and one bridging sulphur atom of oxs. The crystal structure of $\mathrm{Cu}(\mathrm{ss})_{2} \mathrm{Cl}$ is formed by a polymeric chain in which every copper has a tetrahedral environment, achieved by two ligands bridged via the two sulphur atoms between two coppers, one ligand bonded only through the 2-thione sulphur, and one chlorine. The distortions of the $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}=\mathrm{S}$ groups from the symmetrical positions with respect to the other two bonds of the $C\left(\mathrm{sp}^{2}\right)$ carbons, verified in the complexes and in the free ligands, are interpreted in terms of the VSEPR model.

INTRODUCTION

It is well known that thioamido-containing ligands reduce copper(II) salts to yield complexes of copper (I), whose stereochemistry is very flexible. We have reported several copper(I) complexes with the following heterocyclic pentaatomic rings

$\mathrm{X}=\mathrm{CH}_{2}, \mathrm{O}, \mathrm{S}, \mathrm{NH}, \mathrm{NMe}, \mathrm{NEt}$
$\mathbf{R}=\mathbf{H}, \mathrm{Me}$
prepared from different copper(II) salts. ${ }^{1}$ The reduction rate is very fast for $R=H$, but for $\mathbf{R}=$ alkyl the reaction proceeds with such a low rate that copper(II) complexes of N, N^{\prime}-dimethyl- and N, N^{\prime}-diethyl-imidazolidine-2-thione have also been obtained. ${ }^{2}$

Recently, ${ }^{3}$ we have prepared a new series of ligands still having the imidazolidine ring as framework and two chalcogen atoms at $\mathrm{C}-2$ and $\mathrm{C}-4$, as shown below.

By studying the donor abilities of Y and Z towards molecular iodine, ${ }^{4}$ we have found that for $\mathrm{Y}=\mathrm{Z}$ the interaction occurs via Y , while for $\mathrm{Y} \neq \mathrm{Z}$ selenium binds I_{2} more strongly than sulphur and oxygen. The comparison of the stability constants obtained for sox, oxs and ss with those obtained for the imidazolidine-2-thiones variously substituted, shows that the latter are much richer in electrons than the formes. This fact leads us to think that the reducing properties of the substituted imidazolidine-2,4dichalcogens must be lower than those of the corresponding imidazolidines.

Nevertheless, the reaction of sox, ss and oxs with copper(II) chloride and bromide always yields copper(I) complexes.

EXPERIMENTAL

The syntheses and purification of the ligands have been described elsewhere. ${ }^{3}$ The copper(I) complexes with sox and oxs (see Table I) were obtained by refluxing CuX ($\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$) and the appropriate ligand (1:4 molar ratio), both dissolved in isopropanol. After cooling, chloroform was added to the solution and crystals of the complexes were obtained by slow evaporation.

TABLE I
Colours. melting points and analytical data for the copper(I) complexes.

Complex.	Colour	M.p. ${ }^{\circ} \mathrm{C}$	C	Analysis (\%) ${ }^{\text {a }}$	
					N
$\mathrm{Cu}(\text { sox })_{2} \mathrm{Cl} \cdot \mathrm{H}_{2} \mathrm{O}$	yellow	154	$\begin{gathered} 29.8 \\ (29.6) \end{gathered}$	$\begin{gathered} 4.7 \\ (4.5) \end{gathered}$	$\begin{gathered} 13.8 \\ (13.8) \end{gathered}$
$\mathrm{Cu}(\mathrm{sox})_{2} \mathrm{Br} \cdot \mathrm{H}_{2} \mathrm{O}$	yellow	138	$\begin{gathered} 26.6 \\ (26.7) \end{gathered}$	$\begin{gathered} 4.2 \\ (4.0) \end{gathered}$	$\begin{gathered} 12.4 \\ (12.5) \end{gathered}$
Cu_{2} (oxs) Cl_{2}	yellow	201 d	$\begin{gathered} 28.7 \\ (28.6) \end{gathered}$	$\begin{gathered} 3.6 \\ (3.8) \end{gathered}$	$\begin{gathered} 13.1 \\ (13.3) \end{gathered}$
$\mathrm{Cu}(\mathrm{oxs})_{2} \mathrm{Br}$	yellow	191	$\begin{gathered} 27.9 \\ (27.8) \end{gathered}$	$\begin{gathered} 4.0 \\ (3.7) \end{gathered}$	$\begin{gathered} 12.7 \\ (13.0) \end{gathered}$
$\mathrm{Cu}(\mathrm{ss}) \mathrm{Cl}$	yellow	174	$\begin{gathered} 22.9 \\ (23.2) \end{gathered}$	$\begin{gathered} 3.1 \\ (3.1) \end{gathered}$	$\begin{gathered} 10.7 \\ (10.8) \end{gathered}$
$\mathrm{Cu}(\mathrm{ss}) \mathrm{Br}$	yellow	234	$\begin{gathered} 19.6 \\ (19.8) \end{gathered}$	$\begin{gathered} 2.7 \\ (2.7) \end{gathered}$	$\begin{gathered} 9.5 \\ (9.2) \end{gathered}$
$\mathrm{Cu}(\mathrm{ss})_{2} \mathrm{Cl}$	orange	230	$\begin{gathered} 28.6 \\ (28.6) \end{gathered}$	$\begin{gathered} 3.9 \\ (3.8) \end{gathered}$	$\begin{gathered} 13.2 \\ (13.4) \end{gathered}$
$\mathrm{Cu}(\mathrm{ss})_{2} \mathrm{Br}$	orange	278	$\begin{gathered} 26.1 \\ (25.9) \end{gathered}$	$\begin{gathered} 3.4 \\ (3.5) \end{gathered}$	$\begin{gathered} 12.0 \\ (12.0) \end{gathered}$

[^0]The crystals of the oxs complex employed in the X-ray analysis contained isopropanol as $2 \mathrm{Cu}(\mathrm{oxs})_{2} \mathrm{Br} \cdot \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$. The presence of one molecule of water in the sox complexes was determined by thermogravimetric analyses and was evident by the medium band at 3536 and $3542 \mathrm{~cm}^{-1}$, present in the infrared spectra of the chloro- and bromo-complexes, respectively.

Using methanol instead of isopropanol as solvent, yellow powders of $\mathrm{Cu}(\mathrm{ss}) \mathrm{X}$ ($\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$) precipitate immediately. After filtration, orange crystals of $\mathrm{Cu}(\mathrm{ss})_{2} \mathrm{X}$ are formed from the mother liquor by slow evaporation of the solvent. The $\mathrm{Cu}(\mathrm{ss}) \mathrm{X}$ complexes were also prepared by refluxing CuX and ss in methanol in a $1: 1$ molar ratio (see Table I).

The X-ray measurements were carried out as described in Table 1I; the lattice parameters in both cases were determined from least-squares refinement of θ values for 15 reflections accurately centred on the diffractometer. The intensity data were corrected for Lorentz and polarization effects; for $\mathrm{Cu}(\mathrm{oxs})_{2} \mathrm{Br}$ an empirical aborption correction was also applied. ${ }^{5}$ The structures were solved by the Patterson and Fourier method and refined by least-squares methods using the SHELX-76 program; ${ }^{6}$ in $\mathrm{Cu}(\mathrm{ss})_{2} \mathrm{Cl}$ the hydrogen atoms, located from a final ΔF map, were included in the last refinement cycle, while in $\mathrm{Cu}(\mathrm{oxs})_{2} \mathrm{Br}$ they were not located. In the latter compound five reflections ($200,011,111, \overline{1} 02,0 \overline{1} 2$) which can be effected by extinction were excluded

TABLE II
Experimental data for the crystallographic analyses.

Compound	$2 \mathrm{Cu}(\mathrm{oxs})_{2} \mathrm{Br} \cdot \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$	$\mathrm{Cu}(\mathrm{ss})_{2} \mathrm{Cl}$
Formula	$\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{Br}_{2} \mathrm{Cu}_{2} \mathrm{~N}_{8} \mathrm{O}_{5} \mathrm{~S}_{4}$	$\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{ClCuN}_{4} \mathrm{~S}_{4}$
M.W.	923.76	419.50
Space group	P1	$P 2_{1} / n$
$a, \mathrm{~A}$	15.637(5)	11.766(12)
b, \AA	13.154(5)	9.654(4)
c, A	10.096(3)	15.018(7)
$\alpha{ }^{\circ}$	109.94(6)	90.0
β, ${ }^{\circ}$	80.82(5)	90.56(2)
$\gamma{ }^{\circ}$	98.07(5)	90.0
V, \AA^{3}	1919(1)	1706(2)
2	2	4
$D_{c}, \mathrm{~g} \mathrm{~cm}^{-3}$	1.599	1.634
$D_{o}, \mathrm{~g} \mathrm{~cm}^{-3}$	1.57	1.65
$F(000)$	932	856
Temperature, K	293	293
Crystal size, mm^{3}	$0.39 \times 0.82 \times 0.82$	$0.45 \times 0.62 \times 0.25$
Diffractometer	Philips PW 1100	Siemens AED
μ, cm^{-1}	34.24	19.07
Absorption correction	1.00-1.88	
Max. scan speed, $\%$ min	4.8	2.5
Scan width, ${ }^{\circ}$	1.60	$1.2+0.35 \operatorname{tg} \theta$
Radiation, \AA	0.71069	0.71069
θ range, ${ }^{\circ}$	2.5-25.0	3-24
Standard reflection	$5 \stackrel{7}{ }$	750
Intensity variation	0.020	0.038
Scan mode	$\omega-2 \theta$	$\omega-2 \theta$
Measured reflections	6738	3020
Reflections used in the refinement	3936	2059
Condition of the measured reflections	$D 3 \sigma(I)$	$1>2 \sigma(1)$
No. of refined parameters	378	245
$R=\Sigma\|\Delta F\| / \Sigma\left\|F_{o}\right\|$	0.0593	0.0504
$\boldsymbol{R}_{w}=\left[\Sigma_{w}(\Delta F)^{2} / \Sigma_{w} F_{o}^{2}\right]^{1 / 2}$	0.0666	0.0541
$K, g\left(w=K\left[\sigma^{2}\left(F_{o}\right)+g F_{o}{ }^{2}\right]\right)$	1.0, 0.0046	0.43, 0.0115

TABLE III
Atomic coordinates (fractional $x 1^{4}$) for $\mathrm{Cu}(o x s)_{2} \mathrm{Br} \cdot \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$, with estimated standard deviations in parentheses.

Atom	$v a$	y / b	z / c
$\mathrm{Cu}(1)$	1315(1)	167(1)	2156(2)
$\mathrm{Cu}(2)$	2901(1)	$-1369(1)$	1710(1)
$\mathrm{Br}(1)$	2036(1)	37(1)	4050(1)
Br(2)	2159(1)	-3115(1)	1802(1)
S(1)	1368(2)	$1776(2)$	$1790(3)$
S(2)	217(2)	-1064(2)	1349(3)
S(3)	2665(2)	-785(2)	-97(3)
S(4)	$4328(2)$	-1026(3)	2133(3)
$\mathrm{O}(1)$	3183(6)	3598(6)	5760(9)
$\mathrm{O}(2)$	310(5)	-2965(6)	4823(8)
O(3)	1139(6)	-4378(5)	-2512(8)
$\mathrm{O}(4)$	4083(9)	-4118(10)	3957(19)
$\mathrm{N}(1)$	2316(6)	2555(6)	3984(9)
N(2)	2640(6)	4297(7)	4252(9)
N(3)	335(5)	-1873(6)	$3420(8)$
N(4)	1465(6)	-2852(7)	-3210(9)
N(5)	1879(5)	-2803(6)	$-1180(8)$
N(6)	-588(6)	-3371(6)	3040(8)
N(7)	4043(6)	-2719(8)	3019(12)
N(8)	5259(8)	-3006(8)	3559(14)
C(1)	1924(7)	2714(7)	2976(9)
C(2)	2765(7)	$3530(8)$	4768(11)
C(3)	2122(6)	3892(7)	3070(9)
C(4)	$1300(8)$	4474(9)	3432(11)
C(5)	2657(8)	3978(9)	1657(11)
(16)	-3(5)	-1923(6)	2284(8)
C(7)	$51(7)$	-2775(7)	3877(10)
C(8)	-662(6)	-2905(7)	1924(9)
C(9)	-434(8)	-3655(8)	452(10)
C(10)	-1586(7)	-2578(9)	2115(12)
C(1)	2144(6)	-1808(7)	-1295(9)
C(12)	1452(7)	-3477(8)	-2372(10)
C(13)	1904(7)	-1732(7)	-2598(10)
C(14)	2705(9)	-1587(11)	-3628(14)
C(15)	1276(8)	-898(9)	-2309(12)
C(16)	4565(6)	-1953(8)	2723(10)
C(17)	4448(9)	-3371(11)	3615(17)
C(18)	5475 (8)	-2091(10)	2997(13)
C(19)	6059(10)	-2303(19)	1649(17)
$\mathrm{C}(20)$	5804(10)	-1037(11)	4213(18)
O(1A)	6380(12)	3871 (14)	2835(19)
C(IA)	$5811(18)$	3565(20)	1776(26)
C(2A)	5098(18)	2827(19)	2289(26)
C(3A)	$4558(18)$	3627(20)	$3493(27)$
$\mathrm{H}(1)$	$2291(13)$	1844(18)	4151(17)
H(2)	2878(12)	5073(18)	4638(17)
H(3)	$750(11)$	-1258(16)	3907(15)
$\mathrm{H}(4)$	-950(12)	-4027(17)	3173(16)
H(5)	1970(12)	-3035(17)	- 371 (16)
H(6)	1211(13)	-3110(17)	-4129(17)
H(7)	3417(14)	-2853(23)	2854(23)
H(8)	$5706(16)$	-3320(25)	3873(26)

TABLE IV
Fractional atomic coordinates $\left(\mathrm{x} 10^{4}\right)$ for $\mathrm{Cu}(\mathrm{ss})_{2} \mathrm{Cl}$ with estimated standard deviations in parentheses.

Atom	x / a	y / b	z / c	Atom	x / a	y / b	z / c
Cu	$5202(1)$	$3786(1)$	$6488(1)$	$\mathrm{C}(10)$	$1029(7)$	$1724(8)$	$7106(7)$
C 1	$4726(1)$	$2757(2)$	$7885(1)$	$\mathrm{N}(4)$	$2410(5)$	$3609(6)$	$6921(3)$
$\mathrm{S}(1)$	$6658(1)$	$5371(2)$	$6644(1)$	$\mathrm{H}(1)$	$6133(75)$	$4395(91)$	$8521(53)$
$\mathrm{C}(1)$	$7100(5)$	$5404(7)$	$7706(4)$	$\mathrm{H}(2)$	$6135(76)$	$6411(96)$	$9723(58)$
$\mathrm{N}(1)$	$8012(4)$	$6213(5)$	$7983(3)$	$\mathrm{H}(3)$	$6061(76)$	$5071(95)$	$10064(56)$
$\mathrm{S}(2)$	$9140(1)$	$6971(2)$	$9440(1)$	$\mathrm{H}(4)$	$6953(77)$	$5920(93)$	$10428(64)$
$\mathrm{C}(2)$	$8196(5)$	$6122(6)$	$8867(4)$	$\mathrm{H}(5)$	$8380(77)$	$3548(92)$	$9246(61)$
$\mathrm{C}(3)$	$7346(5)$	$5078(7)$	$9222(4)$	$\mathrm{H}(6)$	$7478(68)$	$3124(95)$	$9704(51)$
$\mathrm{C}(4)$	$6589(7)$	$5712(11)$	$9919(5)$	$\mathrm{H}(7)$	$8359(81)$	$4179(96)$	$10069(64)$
$\mathrm{C}(5)$	$7940(8)$	$3798(9)$	$9571(7)$	$\mathrm{H}(8)$	$8305(73)$	$6562(87)$	$7624(55)$
$\mathrm{N}(2)$	$6711(5)$	$4751(6)$	$8407(3)$	$\mathrm{H}(9)$	$2931(74)$	$3273(96)$	$7151(58)$
$\mathrm{S}(3)$	$3731(1)$	$4764(2)$	$5676(1)$	$\mathrm{H}(10)$	$34(72)$	$3669(82)$	$8181(56)$
$\mathrm{C}(6)$	$2544(5)$	$4265(6)$	$6164(4)$	$\mathrm{H}(11)$	$1146(73)$	$3499(92)$	$8475(64)$
$\mathrm{N}(3)$	$1463(4)$	$4475(6)$	$5820(3)$	$\mathrm{H}(12)$	$972(77)$	$4772(99)$	$7926(61)$
$\mathrm{C}(7)$	$640(5)$	$3958(6)$	$6341(4)$	$\mathrm{H}(13)$	$266(74)$	$1534(80)$	$7220(52)$
$\mathrm{T}(4)$	$-725(1)$	$4021(2)$	$6181(1)$	$\mathrm{H}(14)$	$1265(74)$	$1414(85)$	$6462(59)$
$\mathrm{C}(8)$	$1233(5)$	$3281(7)$	$7127(4)$	$\mathrm{H}(15)$	$1254(73)$	$1407(87)$	$7542(61)$
$\mathrm{C}(9)$	$862(8)$	$3918(14)$	$7994(6)$	$\mathrm{H}(16)$	$1301(67)$	$4885(91)$	$5348(60)$

from the final refinement. The atoms of isopropanol, present in $\mathrm{Cu}(\mathrm{oxs})_{2} \mathrm{Br}$, show very high thermal parameters and consequently their structural parameters are effected by large errors. The atomic scattering factors for the neutral atoms were taken from reference 7; the final atomic coordinates are reported in Table III and IV. The major calculations were performed on CDC Cyber 7600 computer of the Consorzio per la Gestione del Centro di Calcolo Elettronico Interuniversitario dell'Italia NordOrientale, Casalecchio, Bologna with financial support of the University of Parma. Observed and calculated structure factors, and anisotropic thermal parameters together with the calculated least-squares planes have been deposited with the Editor and are available on request.

RESULTS AND DISCUSSION

Infrared Spectra

The most important i.r. bands of the ligands and their complexes are reported in Table V. For the complexes of sox and oxs, the shifts of $v(\mathrm{NH})$ and $v(\mathrm{CO})$ indicate that neither nitrogen nor oxygen are involved in coordination to the copper, since the $v(\mathrm{NH})$ undergoes small displacements as a consequence of changes in hydrogen bonding and $v(\mathrm{CO})$ increases in wavenumber. Hence, coordination must occur through the sulphur atom, as confirmed by the downward shifts of the $v(C S)$ vibrations. The behaviour of the bands assigned to the prevailing $v(\mathrm{CN})$ contributions requires some comment. In fact, with S-coordination, the higher conjugation of the lone pair of the nearby nitrogens should increase the π-bond order of the CN bonds and move their infrared bands to higher wavenumbers. The increase of $v(\mathrm{CN})$ was considered an unambiguous proof of S-coordination in all-the pentaatomic rings containing the thioamido group previously investigated by us. ${ }^{8}$ In the present ligands, coordination through Y or Z or both heteroatoms would change the π-system within $1-4$, with a consequent change in the strength of the three CN bonds. However, as one can see by examining the shifts of $v(\mathrm{CN})$, no real trends are noticed. In fact, for the complexes of sox, the band at $1290 \mathrm{~cm}^{-1}$ which should increase in wavenumber (see footnote in Table V), on the contrary decreases and splits in the chloro derivative, and the band at $1523 \mathrm{~cm}^{-1}$ of oxs
1.r. spectral data $\left(\mathrm{cm}^{-1}\right)$ for the ligands and

	$v(\mathrm{NH})$	$\nu(\mathrm{CO})$	$v(\mathrm{CN})^{\text {a }}$	$\nu(\mathrm{CS})$	δ (CS)	Other vibrations within 600-200 cm^{-1}
sox	3220sh-3179s	1742vs	1529vs-1290vs-1132vs	495 ms	351 ms	586w-563ms-444w-300w-282w
$\mathrm{Cu}(\mathrm{sox})_{2} \mathrm{Cl} \cdot \mathrm{H}_{2} \mathrm{O}$	3230m-3161s	1769vs-1743vs	1533vs-1280ms-1268s-1125ms-1114s	485 ms	347w	563w-302w
$\mathrm{Cu}(\mathrm{sox})_{2} \mathrm{Br} \cdot \mathrm{H}_{2} \mathrm{O}$	$3230 \mathrm{~m}-3164 \mathrm{~s}$	1769vs-1744vs	$1532 \mathrm{vs}-1278 \mathrm{vs}-1125 \mathrm{~ms}-1114 \mathrm{~s}$	485 m	345 w	563 w
oxs	$3265 \mathrm{~s}-3065 \mathrm{~s}$	1717vsbr	1523m-1280)	507 m	391 mw	597m-580sh-450sh-437w-330w
Cu_{2} (oxs) ${ }_{3} \mathrm{Cl}_{2}$	$3301 \mathrm{vs}-3113 \mathrm{~ms}$	1758vs	1478s-1284s	489s	390w-372m	568ms-450w-328w
$\mathrm{Cu}(\mathrm{oxs})_{2} \mathrm{Br}$	$3302 \mathrm{~s}-3133 \mathrm{~ms}$	1758vs	1475s-1281s	490s	369 m	596m-566ms-325vw
ss	3180sh-3138vs		1545vs-1433vs-1271s	554m-451m	333 mw	499 mw
$\mathrm{Cu}(\mathrm{ss}) \mathrm{Cl}$	3220 m		1547vs-1437vs-1294s	549m-452w	341w	586w-506w
$\mathrm{Cu}(\mathrm{ss}) \mathrm{Br}$	3224 s		1545vs-1439vs-1294vs	$550 \mathrm{~ms}-454 \mathrm{~m}$	340w	506 m
$\mathrm{Cu}(\mathrm{ss})_{2} \mathrm{Cl}$	3125 vs		1527vs-1419vs-1264vs	$554 \mathrm{ms-451m}$	331w	498m
$\mathrm{Cu}(\mathrm{ss})_{2} \mathrm{Br}$	3126vs		1527vs-1419vs-1258vs	$555 \mathrm{~ms}-450 \mathrm{~m}$	333w	497m

${ }^{\text {a The three different }} \nu(\mathrm{CN})$ vibrations expected for the free ligands have been assigned to the prevailing contributions of $\nu\left(\mathrm{C}_{2} \mathrm{~N}_{1}\right), \nu\left(\mathrm{C}_{4}{ }^{3} \mathrm{~d}\right)$ and $\nu\left(\mathrm{C}_{2} \mathrm{~N}_{3}\right)$, n decreasing
wavenumbers. For oxs, see text.
undergoes a marked downward shift in its complexes. Hence, no unequivocal information about coordination can be deduced from the displacements of $v(\mathrm{CN})$. Also, for the complexes of ss, where the behaviour of $v(\mathrm{NH})$ excludes nitrogen as a coordinating atom, the bond must occur via sulphur. However, an inspection of the bands attributed to $v(\mathrm{CN})$ and the CS modes does not help in defining the coordination to the metal. For this reason, we have supported the infrared study with an X-ray investigation carried out on those compounds which gave suitable crystals.

Crystal Structure of Bromo-Tris(5,5-dimethylimidazolidin-2-one-4-thione)- μ-bromo-$\mu-S(5,5$-dimethylimidazolidin-2-one-4-thione)dicopper(I).
In the structure of the title compound, depicted in Fig. 1, each copper atom is surrounded by two sulphurs and one bromine. Bond distances and angles (Table VI) involving the $\mathrm{Cu}(1)$ atom show that the coordination is essentially trigonal planar [116.7(2)-120.1(2) ${ }^{\circ}$] with much distortion to a trigonal pyramid (or tetrahedron) by the long contact $\mathrm{Cu}(1) \ldots \mathrm{S}(3)=2.910(4) \AA$; the copper atom is 0.268 (3) \AA out of the plane

FIGURE 1 Perspective view of bromotris(5,5-dimethylimidazolidin-2-one-4-thione)- μ-bromo-$\mu-S$ (5,5-dimethylimidazolidin-2-one-4-thione)dicopper(I)

TABLE VI
Bond distances (\AA) and angles (${ }^{\circ}$) (a). contacts less than $3.60 \AA$ (b) and hydrogen bonds (c) for $2 \mathrm{Cu}(\mathrm{oxs})_{2} \mathrm{Br} \cdot \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$.

determined by $S(1), S(2)$ and $\operatorname{Br}(1)$. The coordination around $\mathrm{Cu}(2)$ resembles that found for $\mathrm{Cu}(1)$, but the distortion to a trigonal pyramid is more marked [bond angles $112.0(2)-117.7(1)^{\circ}$ J since the copper lies $0.507(2) \AA$ out of the plane passing through S(3), $\mathrm{S}(4)$ and $\mathrm{Br}(2)$, and as a consequence of the strong interaction $\mathrm{Cu}(2)-\mathrm{Br}(1)=2.745(3) \AA$. The $\mathrm{Br}(1)$ and $\mathrm{S}(3)$ atoms bridge the two metal atoms asymmetrically so that the complex must be considered a dimer. The values of the $\mathrm{Cu}(1)-\mathrm{S}$ bond lengths [2.258(4)$2.236(3) \AA]$ agree with those found in similar copper(I) complexes, ${ }^{9-12}$, while those of $\mathrm{Cu}(2)$-S are significantly greater $[2.292(4)-2.303(4) \AA]$ than the former and similar the the values reported for $\mathrm{Cu}(\mathrm{ss})_{2} \mathrm{Cl}$ (see below). The two $\mathrm{Cu}-\mathrm{Br}$ bonds [2.434(3), $2.448(2) \AA]$ are only slightly different and compare well with the values found in several $\mathrm{Cu}(\mathrm{I})-\mathrm{Br}$ complexes. ${ }^{13-15}$ The $\mathrm{Cu}(1)-\mathrm{Br}(1)$ bond length does not appear to be influenced by the bridging function of the bromine; the $\mathrm{Cu}(1)-\mathrm{Br}(1)-\mathrm{Cu}(2)$ angle is $78.82(8)^{\circ}$ and the $\mathrm{Cu}(1) \ldots \mathrm{Cu}(2)$ separation $3.296(3) \AA$.

The structural features of the four ligands are very similar and agree very well with the bond distances and angles obtained for several differently substituted hydantoins. ${ }^{16-18}$ The molecule involving $S(3)$ and $O(3)$ is strictly planar, except of course for the two methyl group; the others slightly deviate from planarity, but the systems of the atoms bonded to the $\mathrm{C}\left(\mathrm{sp}^{2}\right)$ carbons are planar and form mutually dihedral angles of $1.7(3), 6.0(3), 1.1(4)$ and $2.9(5)^{\circ}$ in the four ligands respectively. It is interesting to point out that in the four ligands, the $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}=\mathrm{S}$ bonds do not lie symmetrically with respect to the other two bonds of the $\mathrm{C}\left(\mathrm{sp}^{2}\right)$ carbons.

The whole structure is influenced in its packing arrangement by Van der Waals contacts involving several isopropanol molecules and by an extended system of hydrogen bonds between all the nitrogen, oxygen and bromine atoms (Table VI).

FIGURE 2 Perspective view of catena-chloro(5,5-dimethylimidazolidine-2,4-dithione) $\mu-S, S^{\prime}(5,5$-dimethyl-imidazolidine-2,4-dithione)copper(I).

Crystal Structure of Catena-Chloro(5,5-dimethylimidazolidine-2,4-dithione)- μ-S, $S^{\prime}(5,5$-dimethylimidazolidine-2,4-dithione)copper(I).

In $\mathrm{Cu}(\mathrm{ss})_{2} \mathrm{Cl}$ (Figure 2) the copper atom is tetrahedrally surrounded by one chlorine and three sulphur atoms from two ligand molecules, one of which acts as unidentate by the $S(3)$ atom and the other as bridging bidentate by $S(1)$ and $S\left(2^{1}\right)(i=3 / 2-x, y-1 / 2,3 / 2-z)$, so that this molecule connects two adjacent coordination polyhedra thus generating a polymeric chain along the b direction. The $\mathrm{Cu}-\mathrm{Cl}$ bond distance (Table VII) of 2.393(2) \AA compares well with the values found in other tetrahedral copper(I) compounds. ${ }^{19-20}$ The $\mathrm{Cu}-\mathrm{S}(1)$ and $\mathrm{Cu}-\mathrm{S}(3)$ bonds [2.307(2). $2.309(2) \AA$] are equal within experimental error, but significantly different from the $\mathrm{Cu}-\mathrm{S}\left(2^{\mathrm{i}}\right) 2.373(2) \AA$ bond length and fall in the range of the values found for other tetrahedral copper(I) complexes,., ${ }^{19,21,22}$ Bond angles around copper are in the range $103.8(1)-116.9(1)^{\circ}$ and confirm the distortion of the coordination polyhedron.

Bond distances and angles in the two ligand molecules are similar and comparable with those found in the free molecule, ${ }^{18}$ where the two thione bonds, 1.648(2)-1.641(2) \AA for the 2 - and 4 -carbons respectively, are very similar. Under coordination, the 4 -thione bond is shortened to $1.623(6)$ and $1.621(6) \AA$ in the mono- and di-coordinated ligands, while the 2 -thione distance becomes $1.655(6)$ and $1.673(6) \AA$. respectively. As seen in the previous structure, the directions of the $S-C$ bonds never bisect the angles subtended at their $\mathrm{C}\left(\mathrm{sp}^{2}\right)$ atoms, as revealed by the values of the $\mathrm{S}-\mathrm{C}-\mathrm{N}$ angles. The SCNN and SCNC groups in each molecule are planar and form dihedral angles of 3.2(2) and $1.6(2)^{\circ}$ respectively in the di- and mono-coordinated ligands, so that, apart from the methyl groups, they are roughly planar.

The structure is packed by Van der Waals contacts and by intra- and intermolecular hydrogen bonds (Table VII).

As is well known for copper(I) complexes with soft donor ligands, no prediction about the geometry of the complex can be made on the basis of stoichiometry alone, but the coordination site of the ligand may be easily identified by infrared spectroscopy. In the present complexes, the $\nu(\mathrm{NH})$ and $\nu(\mathrm{CO})$ shifts exclude nitrogen and oxygen as coordinating atoms: consequently, coordination must occur through the sulphur atoms, as confirmed by the two reported structures, although no bands attributable to $\nu(\mathrm{CuX})(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ and $\nu(\mathrm{CuS})$ have been identified. In addition, the anomalous behaviour of the $v(\mathrm{CN})$ bands and, for ss complexes, the absence of significant shifts of the bands attributed to the CS modes could be a consequence of their erroneous assignments: however this seems very improbable, since the CS modes were assigned on the basis of selenation ${ }^{3}$ and the $\nu(\mathrm{CN})$ vibrations on the basis of their sodium salts. ${ }^{23}$ On the other hand, for the two series of ss complexes. i.e. $\mathrm{Cu}(\mathrm{ss}) \mathrm{X}$ and $\mathrm{Cu}(\mathrm{ss})_{2} \mathrm{X}$, the $\boldsymbol{v}(\mathrm{CN})$ vibrations undergo opposite shifts. although it is certain that in the $\mathrm{Cu}(\mathrm{ss}) \mathrm{X}$ complexes coordination must occur through one or both sulphur atoms. We have experienced similar difficulty in assigning the coordination site by i.r. spectra in complexes of pentaatomic rings containing the thioamido group condensed with benzene. ${ }^{24}$ There, the large π-system was considered responsible for the very low shifts verified in the coordinated and free ligands. Here, the coupled nature of the infrared bands and the large π-system could be responsible for this behaviour. However, the structure of the oxs complex justifies the presence of only two $v(\mathrm{CN})$ vibrations. In fact, in coordinated oxs, the two bonds $\mathrm{C} 2-\mathrm{N} 1^{*}(1.29-1.39 \AA)$ and $\mathrm{N} 3-\mathrm{C} 4(1.29-1.35 \AA)$ are very close for all four ligands, but different from C2-N3 (1.41-1.46 \AA).

On the basis of the infrared data alone. it is very difficult to predict the geometries of the other reported complexes; however, the complex $\mathrm{Cu}_{2}(o x s)_{3} \mathrm{Cl}_{2}$ could be formulated as $\left\{\mathrm{Cu}(\mathrm{oxs}) \mathrm{Cl} \cdot \mathrm{Cu}(\mathrm{oxs})_{2} \mathrm{Cl}\right\}$ while the $\mathrm{Cu}(\mathrm{ss}) \mathrm{X}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ complexes could be polymers with bridging ligands.

[^1]TABLE VII
Bond distances (\AA) and angles $\left(^{\circ}\right)$ (a), intermolecular contacts less than $3.6 \AA$ (b) and intramolecular and intermolecular hydrogen bonds (\AA and ${ }^{\circ}$) (c) for $\mathrm{Cu}(\mathrm{ss})_{2} \mathrm{Cl}$.

Symmetry codes for (c):

An interesting feature is the asymmetrical position of the thionic groups (see above) and their further distortions under S-coordination. In the structure of ss, ${ }^{18}$ the $\mathrm{N} 1-\mathrm{C} 2-\mathrm{S}$ angle of $130.0(2)^{\circ}$ is higher than N3-C2-S $124.3(1)^{\circ}$ and this can be interpreted in terms of the VSEPR model. In fact. the bondlengths N1-C2 and N3-C2, 1.326(2) and 1.397(3) Å respectively, indicate a higher conjugation of the lone pair of N 1 with respect to that of N3 towards $\mathrm{C}=\mathrm{S}$: consequently, the higher double bond character of N1-C2 increases the repulsion with the CS bond and enlarges the angle N1-C2-S. The same is true for the thione group at carbon- 4 , but the angle deformation is in this case very low, in consequence of the presence of the methyl groups. Under coordination, the monocoordinated ligand keeps the angles around the $\mathrm{C} 2\left(\mathrm{sp}^{2}\right)$ practically unchanged, while in the dicoordinated ligand, the 2 -thione bond undergoes a remarkable lengthening from 1.648 to $1.673 \AA$ with a consequent increase in repulsion between the two CN bonds, varying the internal angle from 105.7 to 107.7°. Vice versa, the changes of the angles around $\mathrm{C} 4\left(\mathrm{sp}^{2}\right)$ are very low in the monocoordinated ligand, and the 4 -thione bond becomes practically symmetrical in the dicoordinated one, where the conjugation of the lone pair of $\mathrm{N}-3$ towards the 4 -thione bond decreases. The same considerations can be made concerning the distortions of the $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}=\mathrm{S}$ bonds in coordinated oxs. Here, the N1-C2-O and N3-C2-O angles differ more than the corresponding angles in ss. since the conjugation of the $\mathrm{N}-3$ lone pair occurs preferably towards the thiocarbonyl group. as demonstrated by the bondlengths of $\mathrm{C} 2-\mathrm{N} 3(1.41-1.46 \AA)$ and N3-C4 (1.29-1.35 Å).

REFERENCES

1. F.A. Devillanova, F. Isaia and G. Verani. J. Ihorg. Nucl. Chem. 43, 2749 (1981) and references therein.
2. F.A. Devillanova and G. Verani. Transition Met. Chem. 3, 42 (1978).
3. F. Cristiani. F.A. Devillanova. A.. Diaz. F. Isaia and G. Verani. Phosphorus and Sulfur, 22, 23 (1985).
4. I. Cau, F. Cristiani. F.A. Devillanova and G. Verani. J. Chem. Soc. Perkin II, 749 (1985).

5 AC.T. North. D.C. Phillips and F. Scott Mathews. Acta Cryst. A24, 351 (1968).
6. G.M. Sheldrick. SHELX 76. Program for Crystal Structure Determination. University of Cambridge, England. 1976.
7. "International Tables for X-ray Crystallography: Vol. IV". Kymoch Press, Birmingham. 1974.
8. F. Cristiani. F.A. Devillanova. A. Diaz and G. Verani. Inorg. Chim. Acta, 68, 213 (1983) and references therein.
9. L.P. Battaglia, A. Bonamartini Corradi. F.A. Devillanova and G. Verani. Transition Met. Chem., 4, 264 (1979).
10. M.S. Weininger. G.W. Hunt and E.L. Amma. Chem. Commun. 1140 (1972)
11. W.A. Spofford. III and E.L. Amma. Acta Cryst. B26, 1474 (1970).
12. J.M. Bret. P. Castan. G. Jugie. A. Dubourg and R. Roques. J. Chem. Soc. Dalton Trans., 301 (1983)
13. E.W. Ainscough. E.N. Baker. A.M. Brodie. N.G. Larsen and K.L. Brown.J. Chem. Soc. Dalton Trans., 1746 (1981).
14. J.R. Nicholson. A.C. Flood. C.D. Garner and W. Clegg. Chem. Commun., 1179 (1983).
15. J.C. Bames and J.D. Paton. Acta Crrst., B38, 3091 (1982).
16. L.A. Walker. K. Folting and L.L. Merritt. Jr.. Acta Cryst. B25, 88 (1969)
17. A. Camerman and N. Camerman. Acta Cryst., B27, 2205 (1971).
18. F.A. Devillanova, F. Isaia. G. Verani. L.P. Battaglia and A. Bonamartini Corradi. unpublished data.
19. R.L. Girling and E.L. Amma. Inorg. Chem. 10, 335 (1971).
20. M.R. Caira and L.R. Nassinbeni. J. Chem. Soc. Dalton Trans. 4 (1976).

[^0]: ${ }^{a}$ Calculated values in parentheses

[^1]: *The numbering is the one reported for the ring nomenclature.

